On the nucleation of dust in oxygen-rich stellar outflows.

نویسنده

  • John M C Plane
چکیده

Understanding the nature of dust condensation in the outflow from oxygen-rich asymptotic giant branch stars is a continuing problem. A kinetic model has been developed to describe the formation of gas-phase precursors from Ca, Mg, Fe, SiO and TiO in an outflow cooling from 1500 to 1000 K. Electronic structure calculations are used to identify efficient reaction pathways that lead to the formation of metal titanates and silicates. The molecular properties of the stationary points on the relevant potential energy surfaces are then used in a multi-well master equation solver to calculate pertinent rate coefficients. The outflow model couples an explicit treatment of gas-phase chemistry to a volume-conserving particle growth model. CaTiO₃ is shown to be the overwhelming contributor to the formation of condensation nuclei (CN), with less than 0.01 per cent provided by CaSiO₃, (TiO₂)₂ and FeTiO₃. Magnesium species make a negligible contribution. Defining CN as particles with radii greater than 2 nm, the model shows that for stellar mass loss rates above 3×10⁻⁵ M⊙ yr⁻¹, more than 10⁻¹³ CN per H nucleus will be produced when the outflow temperature is still well above 1000 K. This is sufficient to explain the observed number density of grains in circumstellar dust shells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lack of Chemical Equilibrium Does Not Preclude the Use of Classical Nucleation Theory in Circumstellar Outflows

Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of conden...

متن کامل

Too little radiation pressure on dust in the winds of oxygen-rich AGB stars

Aims. It is commonly assumed that the massive winds of AGB stars are dust-driven and pulsation-enhanced. However, detailed frequency-dependent dynamical models which can explain the observed magnitudes of mass loss rates and outflow velocities have been published so far only for C-stars. This letter reports on first results of similar models for oxygen-rich AGB stars. The aim is to provide a be...

متن کامل

Dusty winds — II. Observational Implications

We compare observations of AGB stars and predictions of the Elitzur & Ivezić (2001) steadystate radiatively driven dusty wind model. The model results are described by a set of similarity functions of a single independent variable, and imply general scaling relations among the system parameters. We find that the model properly reproduces various correlations among the observed quantities and de...

متن کامل

Stellar Populations in the Central Galaxies of Fossil Groups

It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...

متن کامل

Dust formation and wind acceleration around the aluminum oxide–rich AGB star W Hydrae

Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but ~40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 371 1994  شماره 

صفحات  -

تاریخ انتشار 2013